The network effects of carbon pricing

E. Campiglio^{1,2} H. Massoni¹ S. Trsek³ International Association of Energy Economists (IAEE) Riyadh - 6 February, 2023

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³Vienna University of Economics and Business

- Climate change \rightarrow Decarbonisation policies needed!
 - However: concerns over transition risks
 - Carbon pricing \rightarrow macroeconomic effects and competitive drawbacks? \rightarrow obstacles to implementation
- Multi-sector and multi-region perspective
 - How does transition costs propagate within the international production network?
 - Who are the winners and losers of the network reconfiguration?

Model structure

- Multi-sector open-economy model $(\mathcal{C} \times \mathcal{S})$ Details
 - Firms: nested CES production with input bundle M and labor \rightarrow elasticities ξ (labor/inputs), θ (sectors) and σ (countries)
 - Consumers: nested CES consumption bundle C

 \rightarrow elasticities ρ (sectors) and ε (countries)

Carbon pricing

- A tax on direct carbon emissions is introduced Details
 - \rightarrow Cascades of price adjustments
- New equilibrium with new relative prices *p*, technological coefficients *a* and consumption shares *G* Details
 - New prices: $p_{si}^{new}(\mathbf{T}, \mathbf{A})$ with $\mathbf{T} = \{\tau_{si(\omega)}\}\$ and $\mathbf{A} = \{a_{si(\omega)}\}\$
 - Firm-level adjustments to p^{new} in inputs:

$$a_{si}^{new} = a_{si} \left(\frac{P^{new}}{P_M^{new}}\right)^{\xi} \left(\frac{P_M^{new}}{P_N^{new}}\right)^{\theta} \left(\frac{P_{Ns}^{new}}{P_{si}^{new}}\right)^{\sigma}$$

• Consumers' reaction to p^{new} in final goods:

$$G_{si}^{new} = \frac{C_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_{Cs}^{new}}\right)^{\rho} \left(\frac{P_{Cs}^{new}}{P_{si}^{new}}\right)^{\varepsilon}$$

Data, calibration and scenarios

- Data: World Input-Output Database (WIOD)
 - \rightarrow 44 countries and 56 productive sectors
- Calibration:
 - Elasticities: literature in trade and production networks \rightarrow Baqaee & Farhi (2020, 2021), Atalay (2017)
 - Technological requirements (α) and consumption preferences (γ): WIOD
- We run 3 carbon pricing scenarios $(40\$/tCO_2)$:
 - 1. Global carbon tax
 - 2. EU-only carbon tax
 - EU carbon tax + carbon border adjustment mechanism (CBAM)
- Revenue recycling: collected and distributed to domestic consumers

Results

CO₂ emissions and economic impacts

- Global tax vs. EU production tax vs. EU + CBAM tax:
 - Global carbon emissions: -4.5% vs. -0.3% vs. -0.4%
 - Average output change: -1.9% vs. -0.17% vs. -0.21%
- Distribution of costs country level Sectoral costs Country clustering

- 1. Input substitution:
 - · Firms replace more expensive inputs with cheaper ones
- 2. Direct final demand:
 - · Households replace more expensive consumption goods
- 3. Indirect final demand:
 - Final demand changes induce changes in intermediate demand

Network effects - Results

- Dominant effects:
 - Global: direct/indirect demand effects
 - EU/EU+CBAM: input substitution responsible for most losses
 - \rightarrow Relative competitiveness losses sharper with unilateral policies

Network recomposition

- GVC positioning (downstreamness/upstreamness) Details
 - Highly-emitting and connected countries: marginalisation
 - Unilateral EU tax shifts network towards non-EU countries
 - Adding CBAM doesn't help EU GVC marginalisation

Conclusions

Conclusions

- Carbon pricing \rightarrow Potential cascades of price changes and output losses
 - Both direct and indirect (imported) emissions matter
 - Firms/households substitute away from carbon-intensive inputs
- Macroeconomic impacts winners and losers
 - GVC positioning and policy shape network effects
 - Carbon pricing reconfigures GVC
- Coming work:
 - Technological change fuel switching vs. process emissions
 - Revenue recycling policies key for welfare/competitiveness
 - Can a policy-maker counter GVC marginalisation?

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH) Support slides

Baseline model - Firms

- Economy populated with $\mathcal{C}\times\mathcal{S}$ representative firms
- Firms produce with a set of factors F and a bundle of intermediate inputs M, using technology X = min { F/α_F, M/α_M }
- Factors are used in fixed proportions $F = \min\left\{\frac{\kappa}{\alpha_{\rm K}}, \frac{L}{\alpha_{\rm I}}\right\}$
- Interm. input bundle (double-nested CES) jointly defined by

• Firms minimise output costs $\Gamma = \sum_{s,i} p_{si} f_{si}$

Baseline model - Households

- \bullet Economy populated with ${\mathcal C}$ representative households
- Households consume a bundle of final goods C defined by

$$C = \underbrace{\left(\sum_{s \in \mathcal{S}} \gamma_s^{\frac{1}{\rho}} C_s^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}}_{\text{sectors}}, \quad C_s = \underbrace{\left(\sum_{i \in \mathcal{C}} \gamma_{si}^{\frac{1}{\varepsilon_s}} c_{si}^{\frac{\varepsilon_s-1}{\varepsilon_s}}\right)^{\frac{\varepsilon_s}{\varepsilon_s-1}}}_{\text{countries}}$$

• Budget constraint is

$$P_C C = r \sum_s K_s + w \sum_s L_s + T$$

where revenues are generated from:

- Renting capital endowments K at rate r
- Supplying labour L at rate w
- Receiving lump-sum taxes T from carbon pricing

Baseline model - Input-output structure

 Optimal consumption of input and final goods {s, i} ∈ S × C yields a linear relationship between input and output

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{c}$$

where:

- x is the vector of country-sector output
- c is the vector of final demand
- A is the matrix of technical coefficients
- Important: both A and c are price-dependent
- We normalise prices to 1 to keep the model in real terms
- The 'Leontiev inverse' can be decomposed as a power series, such that (I – A)⁻¹ = I + A + A² + ...; this is the basis for the decomposition of the stranding cascades hereafter.

Carbon pricing

- Emissions δ_{si} are taxed by country-sector ω at rate $\tau_{si(\omega)}$
- Given the intermediate input market structure **A**, the new price of input {*s*, *i*} for other firms should encompass:
 - (i) *direct* emission costs: $\delta_{si} \tau_{si(\omega)}$
 - (ii) *indirect* emission costs resulting from buying inputs further up the supply chain
- New intermediate input prices are therefore given by¹:

¹All {s, i}, $\omega, j, k \in S \times C$

New prices distort the structure of the intermediate inputs market

• **A**^{new} with elements

$$a_{si}^{new} = a_{si} \left(\frac{\frac{P_{M}^{new}}{M}}{P_{Ns}^{new}}\right)^{\theta} \left(\frac{\frac{P_{Ns}^{new}}{Ns}}{P_{si}^{new}}\right)^{\sigma_{s}}$$

- Price indices P^{new}_M and P^{new}_{Ns} contain a weighted average of input prices w.r.t. sectors and countries
- *a^{new}_{si}* coefficients are *deflated* from new prices

Back

New prices affect households consumption patterns

• New share allocated to good c_{si} by country n is given by

$$\frac{c_{si}^{new}}{C^{new}} = \gamma_s \gamma_{si} \left(\frac{P_C^{new}}{P_{Cs}^{new}}\right)^{\rho} \left(\frac{P_C^{new}}{P_{si}^{new}}\right)^{\varepsilon_s}$$

 Price indices P^{new}_C and P^{new}_{Cs} contain a weighted average of input prices w.r.t. sectors and countries

Back

New equilibrium (3/3)

• Changes in revenues after carbon pricing is introduced:

$$P_C^{new} C^{new} = r \sum K_s^{new} + w \sum L_s^{new} + T^{new}$$

- Tax revenues T^{new} are collected at the country level and allocated to households
- Revenues from capital and labour rK^{new} and wL^{new} are collected by domestic households

New equilibrium output

$$\mathbf{x}^{new} = (\mathbf{I} - \mathbf{A}^{new})^{-1} \mathbf{c}^{new}$$

Stranding

Defined as the change in factor utilisation

$$\Delta u = \frac{X^{new}}{X^{old}}$$

Numerical model steps

Baseline				
Original IO system	Income (0)	Output (0)	Prices (0)	Emissions (final)
	Carbon tax	on emission intensiti	es	
Carbon pricing				
Original system with new prices	Income (0)	Output (0)	Prices (1)	Emissions (final)
	Producer reaction via CES functions			
Intermediate input (Firms)				
New IO system	Income (0)	Output (1)	Prices (final)	Emissions (final)
Numerical approximation	Consumer reaction via CES functions			
Final demand (Households)				
New IO system with new demand	Income (1)	Output (2)	Prices (final)	Emissions (final)
	Income / output loop			
General equilibrium				
New IO system with new demand & revenues	Income (final)	Output (final)	Prices (final)	Emissions (final)
Numerical approximation	ļ			
Change in factor utilisation				

Back

Sectoral distribution of costs

Emission-based clustering **back**

- Direct emissions: own emission intensity
- Indirect emissions: emissions intensity implied by the value chain

GVC position indices **back**

Upstreamness - total forward linkages

• Average 'distance' from final use (Antràs et al. 2012; Miller and Temurshoev 2017)

$$u_i = 1 \cdot c_i + 2 \cdot \sum_j \alpha_{ij} c_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} c_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} c_j + \cdots$$

Downstreamness - total backward linkages

- Average 'distance' from primary inputs (labor) (Miller and Temurshoev 2017)
- Average number of production stages (Fally 2012)

$$d_i = 1 \cdot \kappa_i + 2 \cdot \sum_j \alpha_{ij} \kappa_j + 3 \cdot \sum_{j,k} \alpha_{ik} \alpha_{kj} \kappa_j + 4 \cdot \sum_{j,k,l} \alpha_{il} \alpha_{lk} \alpha_{kj} \kappa_j + \cdots$$

Notation: c_i final goods, κ_i value-added (labor), α technical coefficients.

Intermediate output at risk (global)

Edges: Δ % in intermediate trade > 2; *Nodes*: Δ % in total output

Intermediate output at risk (EU+CBAM)

Edges: Δ % in intermediate trade > 0.7; *Nodes*: Δ % in total output

Output and emissions changes are increasing with elasticity parameters

Figure: Sensivity analysis: tax range and parameter space

Sensitivity - elasticity parameters (2/2)

Winners and losers are parameter-dependent Clustering

- Increased rigidity in the input market: higher price increase contagion
- Hypothesis: less emitting countries are closer to final demand
 ⇒ Downstream price progagation + no substitution ↑ negative demand effects

Sensitivity - tax range

- Absence of strong non-linear effects in increasing tax rate
- Increased variance in economic costs!

Next steps: does this translate into network statistics (centrality, degree, etc.)?